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Abstract—Column Generation is a crucial technique for 
addressing large-scale combinatorial problems, particularly in 
logistics and transportation scenarios like the aircraft recovery 
problem. Yet, the initialization of columns within this 
framework remains an unexplored topic that significantly 
affects the efficiency of the solving process. In this study, we 
propose a novel reinforcement learning approach to design 
initial columns for the aircraft recovery problem. This approach 
is conceptualized as a decision-making process led by an agent, 
leveraging a Graph Attention Network combined with Proximal 
Policy Optimization to identify routes that minimize reduced 
costs within the aircraft's flight connection network.  
Preliminary computational results validate the effectiveness of 
the RL approach, demonstrating its capacity to enhance the 
overall speed of the column generation process. Notably, the 
trained policy exhibits robust generalization across different 
networks, rapidly producing high-quality initial columns to 
reduce runtime without additional training. 

Keywords—reinforcement learning, column generation, 
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I. INTRODUCTION 

Column Generation is a widely utilized method for solving 
large scale combinatorial problems with application in 
logistics [1-3] and transportation [4-6]. For example, column 
generation based heuristic has been devised to solve the 
aircraft recovery problem (ARP) and achieved high-quality 
results [5]. However, how to initialize the columns of the 
column generation framework when solving the aircraft 
recovery problem remains an unexplored topic. The 
initialization method has a substantial impact on the efficiency 
of the entire solving process. Fundamentally, the initial 
columns represent preliminary estimations of the optimal ones. 
In the most extreme scenario, where these initial estimations 
are entirely accurate, the best solutions are achieved right 
away. 

For the aircraft recovery problem, due to its significance 
to airline operations, many scholars have conducted research. 
Teodorović and Guberinić [7] were pioneers in examining this 
issue, proposing a network flow-based heuristic method that 
uses branch-and-bound to sequentially plan flight strings for 
each aircraft. Argüello et al. [8] developed a greedy, random 
adaptive search algorithm employing a neighborhood search 
strategy. Cao and Kanafani [9] established a quadratic 0-1 
programming model for the recovery of multiple fleets and 
introduced an approximate linear programming method for 

solving it. Rosenberger et al. [10] created a set-partitioning-
based mathematical model to reschedule flight strings for each 
aircraft, where only pre-specified aircraft were allowed to 
change flights, generating new flight strings. Eggenberg et al. 
[11] used a recovery network with specific constraints to solve 
the problem of abnormal flight recovery, where time is 
discretized into individual time windows that require manual 
adjustment. Liang et al. [5] considered the problem of 
abnormal flight recovery under airport capacity constraints 
and maintenance flexibility conditions. Recently, Wen et al. 
[12] proposed an innovative method for rerouting aircraft to 
meet maintenance demands that emerge during the 
operational phase, utilizing a column generation technique. Li 
et al. [13] address the issue of disrupted flight recovery by 
incorporating two practical elements: firstly, the introduction 
of an alternative recovery strategy that includes altering flight 
durations, and secondly, the integration of aircraft assignment 
limitations. Zang et al. [14] enhance the selection process for 
recovery options by considering the variable characteristics of 
airport capacity changes across different locations and times, 
alongside the dynamic aspects of resolving flight delays. 

From the analysis of the above literature, it is evident that 
significant progress has been made in solving the flight 
recovery problem. However, the focus has mainly been on 
classic integer programming and heuristic algorithms, with 
less consideration given to using artificial intelligence 
algorithms to accelerate the optimization process. 

In this work, we propose a reinforcement learning (RL) 
approach to help design the initial columns (routes) in the 
aircraft recovery problem. The routing process is modelled as 
a decision-making process by an agent. Graph Attention 
Network (GAT) and Proximal Policy Optimization (PPO) are 
integrated to identify routes with negative reduced cost in the 
flight connection network of the aircraft recovery problem. At 
each decision-making step, the agent observes the information 
from the entire flight connection network and chooses one 
node to add to the currently extending route. The information 
includes the departure time, arrival time, and delay, etc. of all 
flights under consideration. The agent repeatedly picks one 
node (flight) in the network until a route is formed; then the 
route’s return is calculated. The agent seeks to maximize the 
route’s return so as to minimize the reduced cost associated 
with the generated route. Preliminary computational results 
confirm that the reinforcement learning approach finds good 
quality routes which help to reduce the total runtime of the 
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entire column generation process. What’s more, the policy 
obtained by training on one flight connection network is able 
to generalize to other new flight connection networks, which 
means high quality initial columns of the new instances of the 
aircraft recovery problem can be found quickly without 
training. 

The rest of the paper is organized as follows. In Section II, 
we review the column generation heuristic to solve the aircraft 
recovery problem. In Section III, we present the reinforcement 
learning based column initialization approach. Computational 
results are demonstrated in Section IV. Section V concludes 
the paper. 

II. COLUMN GENERATION HEURISTICS FOR ARP 

The aircraft recovery problem involves rescheduling 
flights and reassigning aircraft in real-time to minimize 
recovery costs for airlines following disruptions. In the 
previous study [5], a column generation heuristic is proposed 
to solve the problem. The heuristic is structured around a 
master problem that selects routes for aircraft and 
subproblems that generate these routes. In the master problem, 
routes are selected for the aircraft to operate. The optimal dual 
values of these flights are then used as inputs to the 
subproblems, facilitating the creation of new routes. If any 
generated routes exhibit negative reduced costs, they are 
incorporated back into the master problem. This iterative 
process continues until no more routes with negative reduced 
costs can be identified, indicating that the solution to the 
current linear programming model is optimal. Finally, to 
derive an integer solution, the master problem is resolved 
using integer programming. 

The master problem is formulated as a linear relaxation of 
a set partitioning problem. For a detailed formulation of the 
master problem, interested readers are referred to the work [5]. 
On the other hand, the subproblem is based on the flight 
connection network. Fig. 1 presents an example of this 
network. In the network, individual flights represent nodes, 
and their connections are depicted as arcs. Two nodes have a 
direct connection when the airport where one flight terminates 
coincides with the airport where the subsequent flight 
originates. Flights departing earlier are directed towards those 
departing later. To facilitate the process of determining a route 
for the aircraft in the subproblem, dummy source and sink 
nodes are integrated into the network for the start available 
airports and end available airports. The challenge within the 
subproblem is to discover the shortest path from the source 
node to the sink node in the connection network. The goal is 
to minimize the reduced cost, which corresponds to the length 
of the shortest path found. 

The travelling cost of one arc is 

𝛽௖,௙ ൌ 𝛽௖,௙
௦௪௔௣ ൅ 𝛽௖,௙

ௗ௘௟௔௬ െ 𝜋௙                    (1) 

where 𝛽௖,௙
௦௪௔௣  is the cost of changing a flight 𝑓 ’s planned 

aircraft to aircraft 𝑐, 𝛽௖,௙
ௗ௘௟௔௬ is the cost of flight delay, and 𝜋௙ 

is the dual variable for flight 𝑓 of the covering constraint in 
the master problem. Observe that in the subproblem, the 
travelling cost of one arc is not fully given, because 𝛽௖,௙

ௗ௘௟௔௬ is 
also a decision variable, whereas 𝛽௖,௙

௦௪௔௣ and 𝜋௙ are given as 
parameters. In the column initialization phase, we adopt a 
reinforcement learning approach to find the shortest path on 

the flight connection network, and later transfer the trained 
policy to other problem instances. 

 
Fig. 1. Illustration of a connection network (Numbers in brackets represent 
a flight’s scheduled departure and arrival times, converted to integers) [5] 

III. COLUMN INITIALIZATION VIA REINFORCEMENT LEARNING 

A. Reinforcement Learning Framework 

The reinforcement learning methodology is structured as a 
Markov Decision Process (MDP), which serves as a robust 
mathematical framework designed for making sequential 
decisions. At every decision point, the agent obtains the 
current states from the environment and decides on actions 
accordingly. Specifically, within the context of column 
initialization, the agent selects which network node to visit, 
this decision being guided by the detailed information 
pertaining to the various nodes of the network. 

The state of nodes is defined as follows. The node 
information and topology are included in the primitive 
embedding for nodes. The primitive node embedding for 𝑖-th 
node in 𝑁 is a 9-dimensional vector 𝑛௜ with each element as: 
1) the ID of the node, 2) whether the node is a maintenance 
node, 3) the scheduled departure time of the flight, 4) the 
scheduled arrival time of the flight, 5) the delay of the flight, 
6) whether the departure airport of the flight is the start airport 
of the assigned aircraft, 7) whether the arrival airport of the 
flight is the end airport of the assigned aircraft, 8) if the node 
has been picked, 9) whether the flight 𝑖  used to belong to 
aircraft 𝑎𝑟௞. The state of the node is defined as the following 
vector: 𝑠௜ ൌ ሺ𝑛௜,  𝑚௜, 𝑑𝑡௜, 𝑎𝑡௜, 𝑑௜,  𝑤𝑑௜, 𝑤𝑎௜, 𝑝௜,  𝑏௜ሻ. 

For the information of the assigned aircraft, we created a 
dummy node as the final endpoint. The dummy node contains 
the current aircraft's start and end times, the rest of the 
variables are filled with -1. For the aircraft 𝑎𝑟௞  the dummy 
node is defined as the following vector: 𝑠ௗ௨௠௠௬ ൌ ሺെ1, െ1,
𝑠𝑎𝑟௖ , 𝑒𝑎𝑟௖, െ1, െ1, െ1, െ1, െ1ሻ. When the dummy node is 
selected, the search for the initial column (route) is terminated. 
The elements of the state are normalized. 

In this paper, the action set, 𝐴, is defined as all nodes on 
the flight connection network. The action selected at each 
decision making step 𝑡 for aircraft 𝑎𝑟௞ , is at 𝑎௧ ∈  A, which 
represents an aircraft select a node to join its route. The action 
space is defined as 𝐴 ൌ  ሼ1, 2, . . . , |𝑁| ൅ 1ሽ. 

The reward function defines the agent's gain of each 
decision step and indicates whether its behavior is good or bad 
in a particular state within the environment. To minimize the 
path cost (reduced cost), the reward is set to the negative value 
of the arc travelling cost 𝛽௖,௙, which is calculated in Equation 
1. When the dummy node is selected, the reward is set to twice 
the path cost to encourage the agent to choose a longer path 
with a positive sum of rewards. 

B. Proposed Model 

1) Encoder: Graph Attention Network (GAT) [15] is a 
powerful graph neural network architecture, which uses 
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attention mechanism to propagate node information 
effectively. The primitive embeddings for nodes introduced 
in previous section are firstly extended by a full connection 
layer. 

𝑛෤௜ ൌ 𝑊௡ ∗ 𝑛௜                                  (2) 

The inputs of the GAT are the embedding 𝑛෤௜ , and the 
output is an updated node embedding 𝑛ሼୋ୅୘,୧ሽ. The attention 
weight vector for pair 𝑖, 𝑗 is calculated as: 

𝑤ሼ௜,௝ሽ ൌ 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈ሺ𝑊௅ ∗ 𝑛෤௜ሻ                 (3) 

𝑤෥ሼ௜,௝ሽ ൌ
ୣ୶୮ ሺ௪ሼ೔,ೕሽሻ

∑ ୣ୶୮ ሺ௪ሼ೔,ೕሽሻೕ
                              (4) 

𝑛ሼீ஺்,௜ሽ ൌ 𝑛෤௜ ൅ ∑ 𝑤෥ሼ௜,௝ሽ ⊗௝ 𝑛෤௝                    (5) 

where ⊗ represents element-wise multiplication between 
vectors, and 𝑊௡, 𝑊ሼ௜,௝ሽ, 𝑊௅  are weight matrices to be 
learned. The output of GAT provides a more 
comprehensive representation of graph topology. This 
paper employs multiple layers of GAT to ensure that each 
node has a wider acceptance domain, thereby increasing the 
possibility of exchanging information with remote nodes. 
The output from the last layer provides the final version of 
the node embed. Each node embedding contains its own 
information as well as information from related nodes. 

2) Decoder: The decoder operates using an attention 
mechanism, producing the pointer vector 𝑢௜. This vector is 
subsequently transmitted to a softmax layer, which constructs 
a probability distribution over the subsequent candidate node. 
To avoid selecting nodes that should not be chosen, an action 
mask is necessary. We set the action mask of the nodes with 
excessively long delays to 1, ensuring they will not be 
selected. Similar to pointer networks, the attention 
mechanism and pointer vector 𝑢௜ are defined as: 

𝑢௜ ൌ ൜𝑣ୃ ⋅ tanh ሺ𝑊௥𝑟௜ ൅ 𝑊௤𝑞ሻ    if action mask 𝑖 ൌ  0,
െ∞    otherwise

 

(6) 

where 𝑊௥ and 𝑊௤ are trainable matrices, 𝑞 is a query vector 
from the hidden variable of the Gated Recurrent Unit (GRU) 
[16], and 𝑟௜ is a reference vector containing the information 
of the context of all nodes. The distribution policy over all 
candidate node is given by: 

𝜋ఏሺ𝐚௜|𝐬௜ሻ ൌ 𝐩௜ ൌ softmaxሺ𝐮௜ሻ                          (7) 

We predict the next visited node by sampling from the 
policy 𝜋ఏሺ𝐚௜|𝐬௜ሻ. 

3) Training process: We utilize the actor-critic 
framework of Reinforcement Learning to train the parameters 
of both the encoder and decoder. Let the parameter set for the 
encoder and decoder be denoted as 𝜃. In our approach, the 
actor and critic networks share the same architecture, with the 
exception that the critic's decoder includes two additional 
feed-forward layers. The first of these layers is a dense layer 
with ReLU activation, followed by a linear layer. The 

parameter set for the value network is denoted as 𝜙 . The 
training process of the actor-critic cycle is outlined as follows. 

To calculate the advantage by Monte Carlo method: 

𝛿୑େ
ሺ௧ሻ ← ∑  ்ି௧ିଵ

௞ୀ଴ 𝛾௞𝑟௧ା௞ െ 𝑣ොሺ𝑠௧, 𝜙ሻ               (8) 

To train the critic network: 

𝜙 ← 𝜙 ൅ 𝛼థ𝛿୑େ
ሺ௧ሻ ∇థ𝑣ොሺ𝑠௧, 𝜙ሻ                    (9) 

To train the actor via clipped surrogate objective Proximal 
Policy Optimization method: 

𝐿஼௅ூ௉ሺ𝜃ሻ
ൌ 𝔼෡௧ሾ𝑚𝑖𝑛ሺ𝑟௧ሺ𝜃ሻ𝛿୑େ

ሺ௧ሻ , clipሺ𝑟௧ሺ𝜃ሻ,1
െ 𝜖, 1 ൅ 𝜖ሻ𝛿୑େ

ሺ௧ሻ ሻሿ 
(10)

Let 𝛼థ denote the learning rate for the critic. The term 
𝑟௧ሺ𝜃ሻ is the ratio of the new policy to the old policy, with 𝜖 set 
to 0.2. 

IV. COMPUTATIONAL RESULT 

To evaluate the effectiveness of the reinforcement learning 
based column initialization approach, computational 
experiments were carried out in this work. The test scenarios 
and corresponding data are derived from the previous study 
[5]. The experiments utilized a desktop computer featuring an 
NVIDIA GeForce RTX 3090 GPU and an Intel Core i5-13400 
CPU, running Ubuntu 22.04 LTS. All programs were coded 
in Python 3. 

We employed the Proximal Policy Optimization 
framework within reinforcement learning, where the policy 
network was equipped with Graph Attention Networks as 
encoders and GRU-based pointer networks as decoders to 
generate initial columns. The data of Scenario 1 are used to 
train the policy network within the reinforcement learning 
framework. Later, the obtained policy network is used to infer 
the action (which node to choose) in the other scenarios (and 
Scenario 1). Fig. 2 and Table I illustrates the results of the tests 
of all scenarios. We compared the RL initialization approach 
with the originally feasible route initialization approach which 
was adopted in the work [5]. 

TABLE I.  COMPUTATIONAL RESULT OF COLUMN INITIALIZATION 
USING RL AND ORIGINALLY FEASIBLE ROUTES 

Scenario 1 2 3 4
Number of 

Aircraft 
12 44 83 16 

Number of Nodes 95 611 443 83
Number of 

Connections 
1024 49227 13128 466 

Total Runtime 
by Original 

Initialization (s)
15.56 158319.81 7831.53 2.74 

Total Runtime 
by RL 

Initialization (s)
11.79 45582.32 3118.46 2.54 

Reduction 24.23% 71.21% 60.18% 7.3%
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Fig. 2. Total runtime comparison: original vs RL initialization 

Our study demonstrates significant performance 
improvements in column generation for the flight recovery 
problem by employing reinforcement learning-generated 
initial columns compared to using originally feasible routes. 
Across various scenarios, such as Scenario 1 involving 12 
aircraft and 95 nodes where RL initialization reduced column 
generation time from 15.56 seconds to 11.79 seconds, and 
scenarios with 44 aircraft and 611 nodes where it decreased 
from 158319.8 seconds to 45582.3 seconds, RL consistently 
accelerated the solution process. This enhancement is 
attributed to the integration of Proximal Policy Optimization 
with Graph Attention Networks and GRU networks, enabling 
our RL model to effectively capture complex node 
relationships and routing dynamics. The model trained on 
data from Scenario 1 displayed performance across all 
experiments, showcasing its generalizability and stability in 
diverse flight recovery scenarios. Our findings underscore the 
broad applicability and efficacy of RL in column 
initialization tasks, validating its superiority over traditional 
methods across varying problem scales and complexities. 

V. CONCLUSION 

In this study, we propose an innovative reinforcement 
learning method for column initialization during column 
generation, especially for aircraft recovery problems. By 
constructing the column initialization problem as a Markov 
decision process and incorporating Graph Attention Network 
and Proximal Policy Optimization algorithms, effectively 
identify initial columns that minimize reduced costs in the 
flight connection network. Our computational experiment 
results show that this reinforcement learning-based 
initialization method has significant advantages in 
accelerating the column generation process compared with 
using the original route as the initial column. The trained RL 
strategy demonstrates robust generalization across different 
network scenarios and can quickly produce high-quality initial 
columns without additional training. This study provides a 
new way for reinforcement learning to improve the efficiency 
of large-scale combinatorial problem-solving, and also opens 
up a new vision for future research in the field of logistics and 
transportation optimization. In future, we anticipate further 
refinement of this RL-based approach to accelerate the 
process of solving the subproblems along with the whole 
column generation process. Additionally, exploring the 
adaptability of this method to other combinatorial 
optimization problems, such as vehicle routing and crew 

scheduling—previously addressed using the column 
generation algorithm—could expand its applicability. By 
continuously enhancing the learning algorithms and 
broadening the range of problems they can address, this study 
establishes a foundation for enhancing the influence of 
operations research and related fields. 
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