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Abstract—With the massive increase of Internet of Things
devices and their data, executing applications by using micro-
service architecture has emerged as the predominant trend.
As the container technology emerges, microservices can be
lightweightly deployed in resource-constrained edge nodes. How-
ever, existing container scheduling algorithms often overlook
the allocation of computing resources on edge servers. When
multiple containers are assigned to an edge node, it is usually
assumed that they share a CPU frequency, which is obviously
unrealistic. In this paper, we first formulate an online container-
based microservice scheduling problem with dynamic computing
power to minimize the total delay and energy consumption, where
we need to determine the assignment between microservices
and edge nodes and the allocation of computing power to each
microservice in an edge node. Then, we propose a Soft Actor-
Critic (SAC) based reinforcement learning algorithm to address
this problem, where a GRU unit is designed in the policy network
to extract the correlation among multiple decisions, and an action
selection mechanism is given to speed up the convergence. Finally,
a simulated scheduling system is implemented to validate our
algorithm, which demonstrates that our algorithm outperforms
the commonly used baselines by up to 65% in terms of the total
objective on average.

Index Terms—Microservice Deployment, Online Container
Scheduling, Dynamic Resource Allocation, Edge Computing,
Reinforcement Learning.

I. INTRODUCTION

With the development of Artificial Intelligence (AI), Internet
of Things (IoT), and The Fifth Generation Mobile Network
(5G), more and more IoT devices and the massive data
generated by them flood into the Internet. In traditional cloud
computing, these massive computing tasks can be offloaded
to the cloud center for processing. To reduce response delay
and save bandwidth and energy, Mobile Edge Computing
(MEC) has emerged as a promising solution that allows
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computing power to be deployed at the edge of the network
[1], thus it is incredibly beneficial to the popular delay-
sensitive and computation-intensive intelligent applications.
Microservice architecture [2] [3] is commonly used in cloud-
native application design and development but lacks extensive
research on microservice scheduling in edge computing.

Container [4], known for its lightweight virtualization,
serves as an ideal tool for encapsulating and deploying mi-
croservices, which can achieve rapid and scalable deploy-
ment by utilizing its lightweight. Some practical container
scheduling algorithms have been proposed, which can be
used to implement container-based microservice deployment
in edge computing, as shown in Fig. 1. However, current con-
tainer management tools, such as Docker [5] and Kubernetes
[6], implement only basic strategies for allocating containers
to physical nodes, which only consider physical resource
consumption [7]. Soon after, research focuses on optimiz-
ing resource scheduling while transmission delay, image re-
utilization, and load balancing are considered. However, there
are some issues in existing resource allocation modeling. For
example, when multiple microservices/containers are assigned
to an edge node, it is usually assumed that the edge node has
sufficient and stable computing power. The CPU frequency
the edge node provides to each microservice/container is the
same [8]. Because the edge nodes are limited in resources, this
is unrealistic. Or, it is assumed that microservices/containers
are queued to be addressed in the edge node. However, this
mechanism has a certain probability of causing a large delay,
which is unacceptable for delay-sensitive tasks.

The first challenge is allocating multiple microservices to
multiple edge nodes according to the distribution of container
images on edge nodes, especially how to schedule the com-
puting power of an edge node when multiple microservices
are allocated to it. Here, we adopt the Round-Robin (RR)
strategy [9] to equally distribute the remaining computing
power to all new arriving tasks. Once it is determined, it will
not change until the task is completed. This is in line with
the container management mechanism in Kubernetes. Once a
container is created and executed, corresponding computing

236

2024 20th International Conference on Mobility, Sensing and Networking (MSN)

2994-3523/24/$31.00 ©2024 IEEE
DOI 10.1109/MSN63567.2024.00041



Fig. 1. The microservice management architecture: Demonstrates our mi-
croservice deployment strategy using containers for optimized service delay
and energy usage across edge nodes, maintaining acceptable performance
under variable loads.

resources should be allocated. However, this modeling creates
new challenges. We need to assign multiple microservices to
the specific edge node at the same time. However, we do not
know how many microservices will be assigned to an edge
node when making decisions. If the current remaining CPU
frequency is significant, we tend to assign it too many tasks,
which may cause poor performance.

In this paper, we formulate the online container-based mi-
croservice scheduling problem with dynamic computing power
as a Markov Decision Process (MDP) to minimize the total
delay and energy consumption. Its goal is to make informed
decisions based on the current state to achieve long-term
advantages in reducing latency and energy consumption. A
policy gradient-based RL algorithm, Soft Actor-Critic (SAC)
[10], achieves our online scheduling because of its good
performance and fast convergence. Since all microservices’
decisions interact, we add a GRU unit to the policy network
to extract the correlation between multiple actions. The hidden
state of this GRU is cleared once every time slot because
it only focuses on the things in this time slot. Finally, we
implement our algorithms in a simulated container scheduling
system to validate the effectiveness of our proposed algo-
rithm, which can be found in https://github.com/Blacktower27/
CSDCRMDE. Experimental results stand out by substantially
decreasing latency and augmenting energy efficiency, enabling
quick and consistent convergence and enhancing system per-
formance compared to existing paradigms.

The main contributions of this paper are as follows: (1) To
the best of our knowledge, we are the first to mathematically
model the online container-based microservice scheduling
problem with dynamic computing power to minimize total
latency and energy consumption, which improves the relia-
bility and efficiency of microservice applications in resource-
constrained edge nodes. (2) We propose a SAC-based mi-
croservice scheduling algorithm for online offloading deci-
sions, addressing multi-objective optimization by sequentially
executing simultaneous decisions. A GRU unit in the policy
network captures correlations among actions in the same time
slot, with an action selection mechanism to ensure faster

training convergence while reducing the action space. (3) We
extensively evaluate against commonly used heuristic and RL
algorithms. Results demonstrate superior performance regard-
ing low latency, energy efficiency, and guaranteed conver-
gence. Additional ablation experiments validate our approach,
achieving up to a 65% reduction in total objective compared
to baselines.

II. RELATED WORK

Containers are widely adopted for application deployment
due to their simplified management and lightweight na-
ture compared to traditional Virtual Machines (VMs) [4].
They streamline deployment by sharing the host system’s
kernel, eliminating the need for separate operating systems
per instance. Container-based microservice deployment and
scheduling have garnered significant attention in academia
and industry [11]. Singh et al. [12] automated microservice
deployment on Docker containers for a social networking ap-
plication in cloud computing. Container-based cloud platforms
offer low-overhead, secure environments ideal for modular
microservices [13] [14]. Wen et al. [15] introduced GA-Par, a
microservice orchestration framework emphasizing reliability
and Quality of Service (QoS) across distributed cloud data
centers, focusing on security and consistent network perfor-
mance.

Reinforcement learning (RL) is utilized in deploying mi-
croservices because of its notable strengths in addressing
strategic decision-making challenges. Wang et al. [16] investi-
gated microservice coordination among edge clouds to enable
seamless and real-time responses, where they formulated it
as a MDP and solved it by using a RL-based algorithm to
learn the optimal strategy. Chen et al. [17] developed a multi-
buffer deep deterministic policy gradient approach to optimize
service deployment strategies to reduce the average response
time. Lv et al. [18] proposed a multi-objective microservice
deployment problem in edge computing by using a Reward
Sharing Deep Q Learning (RSDQL), which can minimize the
communication overhead and achieve load balance between
edge nodes.

III. SYSTEM MODEL AND PROBLEM
FORMULATION

A. System model

We first model the offloading scenario for computational mi-
croservices. As shown in Fig. 1, in the Internet of Things (IoT)
environment, computation-intensive microservice requests are
generated by IoT devices and offloaded to a group of edge
nodes N for processing. The set of nodes is defined as N =
{n1, n2, · · · , nN}, where N denotes the number of nodes
in this set. Each edge node n possesses limited resources,
primarily including total CPU frequency Fn, memory resource
Mn, and storage space Dn, and can concurrently run a finite
number of containers. The system time is divided into consec-
utive time slots of equal length, denoted by T = {t1, t2, · · · }
with the same length ∆. At the beginning of each time slot t, a
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set of microservice requests Kt are generated by different IoT
devices, and they can be denoted by Kt = {k1, k2, · · · , kKt}.

Each microservice request k in Kt should be executed
within a container and requires a specific image from I =
{i1, i2, · · · , iI} to initialize this container, which can be de-
noted by k = {dk, ck,mk, ik, lk}, where dk is the size of the
microservice, ck is the total number of CPU cycles required to
accomplish the computation microservice, mk is the required
memory of the microservice, ik ∈ I is the required image
of the microservice, and lk is the maximum delay tolerance
of the request. IoT devices can communicate with the edge
node via a wireless connection to determine which node the
microservice should be offloaded to.

B. Microservice Latency

In the process of a demand for microservice, there will
inevitably be some delays, which directly affect the perfor-
mance of the system and user experience. Major delays include
communication latency, image download latency, and compu-
tation latency, which are critical in IoT and edge computing
environments.

Communication latency. Regarding communication la-
tency, we consider a communication model in which IoT
devices share the bandwidth of edge nodes. The uplink wire-
less transmission rate ξn,k(t) of the device of microservice
require k to edge node n can be calculated using the following
formula: ξn,k(t) = Bn

Un(t) log
(

1 +
pkhn,k
σ2

)
where Bn is the

bandwidth of edge node n and Un(t) is the number of
microservice requires transmitted to node n at the time slot t.
Besides, pk is the transmission power, hn,k is the channel gain
between the IoT device and the node, and σ represents the
power of Gaussian white noise. The communication latency
of microservice requires k to transmitted to node n can be
defined as T commn,k (t) = dk/ξn,k(t). Here, we assume the
communication delay T commn,k (t) will not be larger than the
duration of a time slot. That is T commn,k (t) ≤ δ for any
n ∈ N and k ∈ Kt. Furthermore, we overlook the return
communication latency of results, as it can be considered
relatively small compared to the microservice processing itself.

Image download latency. Image download delay refers
to the delay in obtaining images related to microservice
processing, which can be expressed by the following formula:
T downn,k (t) = xn,ik(t)×

(
sik
Bn

+ T queuen (t)
)

where ik represents
the image requested by microservice k and sik represents the
size of the image required to process microservice k, and
xn,i(t) ∈ {0, 1} is a binary variable indicating whether the
image is located on node n at the beginning of time slot t.
When xn,i(t) = 0, it means that the image i has been on
node n, otherwise it is not on node n. T queuen (t) represents
the image download queue on node n at the time slot t, so
if the image required for the microservice is already available
locally on the node, then the download delay is 0.

Computation latency. Different microservices are executed
in different containers, and all microservices are executed
in parallel. The computation latency can be calculated as

T compn,k (t) = ck · Un(t)/Fn(t), where ck is the number of CPU
cycles requested by microservice k and Fn(t) is the remaining
CPU frequency of node n at the time slot t. Here, we assume
the remaining CPU frequency will be evenly distributed to
each arriving microservice.

C. Energy consumption.

Each microservice will be offloaded on a node n. After
processing the microservice, the node returns the calculation
result. Note that we ignore the transmission energy consump-
tion of returning the calculated results from the node because
in most cases the data volume is small and the downlink rate is
higher. The overall power consumption related to microservice
k can be categorized into two primary components. The first
component pertains to the power consumed during the transfer
of the microservice to the node. The second component ac-
counts for the power consumed during the actual computation
on the node. Based on the time it takes to upload the microser-
vice, the power consumption of the microservice k upload can
be defined as Ecommn,k (t) = pcommn · T commn,k (t)/Un(t) where
pcommn is the total power of transmission in node n. When
the node is processing the uploaded computing microservice,
the corresponding energy consumption of the node can be
expressed as: Ecompn,k (t) =

pcompn ·T compn,k (t)·Fn(t)

Un(t)·Fn where pcompn

is the total power of computation in node n. It is not difficult
to find that we adopt the strategy of equal distribution in
transmission and computing power.

D. Problem Formulation and Analysis

For convenience, we define yn,k(t) ∈ {0, 1} as an indicator
variable. When yn,k(t) = 1, the microservice k is executed on
edge node n at the time slot t; Otherwise, we have yn,k(t) = 0.
For each microservice k, it can be assigned to at most one edge
node, then we have

∑
n∈N yn,k(t) = 1. For each node n, it

has Un(t) =
∑
k∈Kt yn,k(t). Thus, the total latency Tk(t) and

total energy Ek(t) to complete microservice k at the time slot
t can be formulated as

Tk(t) =
∑

n∈N
yn,k(t)

[
T commn,k (t) + T downn,k (t) + T compn,k (t)

]
Ek(t) =

∑
n∈N

yn,k(t)
[
Ecommn,k (t) + Ecompn,k (t)

]
. (1)

At the beginning of time slot t, we denote the remaining
CPU frequency of node n as Fn(t), the remaining memory of
node n as Mn(t), and the remaining storage space of node n
as Dn(t), respectively. Following this, the constraints in our
model can be defined.

• Delay constraint: the total delay to finish the microservice
k cannot exceed its maximum tolerance. That is

Tk(t) ≤ lk,∀k ∈ Kt. (2)

• Memory constraint: The total memory on each node is
limited. That is∑

k∈Kt
yn,k(t) ·mk ≤Mn(t),∀n ∈ N . (3)
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Fig. 2. Overview of the system model, in each time slot t, there will be Kt

microservices that need to be offloaded to acceptable edge nodes at the same
time. However, in the actual scheduling, it will be processed in a sequential
manner, which will be described in Sec. IV-B.

• Storage constraint: The total storage on each node is
limited. That is∑

k∈Kt
yn,k(t) · xn,ik(t) · sik ≤ Dn(t),∀n ∈ N . (4)

Generally, once a microservice is finished, the memory and
CPU frequency it occupies will be released. However, once
an image is downloaded to a node, it will always exist on this
node and is allowed to be shared by multiple microservices.
Thus, it implies xn,i(t′) ≤ xn,i(t) if t′ ≥ t.

We aim to minimize the weighted overall microservice
processing latency and energy consumption from a long-
term perspective. The decision process of the microservice
scheduling with dynamic computing power is shown in Fig.
2. At each time slot t, there are totally Kt microservices that
should be determined at the same time. We use α to represent
the weight assigned to latency at the time slot t. The target is
to find the best strategy which can minimize the overall cost
while obeying the constraints. Therefore, the objective of our
online microservice scheduling problem can be defined as

min
∑

t∈T

∑
k∈Kt

(α · Tk(t) + Ek(t))

s.t. Constraint (2), (3), and (4);
xn,i(t) ∈ {0, 1},∀n ∈ N ,∀i ∈ I;

xn,i(t+ 1) ≤ xn,i(t);
yn,k(t) ∈ {0, 1},∀n ∈ N ,∀k ∈ Kt,∀t ∈ T ;∑

n∈N
yn,k(t) = 1,∀k ∈ Kt.

(5)

Obviously, the problem defined in (5) is NP-hard because it
is a special case of online integer programming. RL-based
methods can get a good solution by continuously interacting
with the environment.

IV. ALGORITHM DESIGN

A. Algorithm Settings

State. The system state skt encompasses both the node
resource state and microservice state. In each time slot t,
microservices in Kt are processed sequentially. The node
resource state, denoted as snodet , represents the remaining
resources at the beginning of time slot t. Here we denote the
remaining memory and CPU frequency of the n-th node at

time slot t as M ′n(t) and F ′n(t), respectively. The resource state
includes the remaining CPU frequency, remaining memory
capacity, storage capacity, communication power, computation
power, and bandwidth of the node at time slot t. This state can
be defined as:

snodet = {F ′1(t), . . . , F ′|N |(t),M
′
1(t), . . . ,M ′|N |(t),

D1(t), . . . , D|N |(t), P
comm
1 , . . . , P comm|N | ,

P comp1 , . . . , P comp|N | , B1, . . . , B|N |}. (6)

The microservice state sms,kt of microservice k ∈ Kt at time
slot t encompasses information about the required image on
each node, yn,k(t) for each node n ∈ N and details about
the microservice, including the required image, the required
CPU cycles, the microservice size, and the maximum delay
tolerance. Thus, the microservice state can be expressed as:

sms,kt = {y1,k(t), . . . , y|N |,k(t), dk, ck,mk, ik, lk}. (7)

Thus, the system state skt is skt = snodet ∪ sms,kt .
Action space. The agent needs to determine which node n

to assign for the microservice k. Therefore, the action space
is the set of all nodes as akt ∈ A = {1, 2, · · · , |N |}.

Reward. Defining a proper reward is crucial in the RL
algorithm. To minimize the long-term energy consumption of
the entire system, we utilize negative energy consumption as
the reward. Besides, The reward value should also satisfy the
constraint conditions. If Constraint (2) is violated, we set the
reward as a punitive negative directly. After making a decision
akt , the Tk(t) and Ek(t) can be determined by Eqn. (1). So,
the reward for processing microservice k at time slot t can
be defined as rkt = α · (lk − Tk(t))−Ek(t), where α is used
to balance the importance of latency optimization and energy
consumption. That allows the algorithm to find the optimal
strategy that minimizes the energy cost while increasing the
microservice completion rate within the specified delay.

B. Policy Network

In each time slot t, the decision akt is made according to
its observation skt , however, this skt does not contain any
information about other microservices required to be dealt
with in this time slot. In other words, there are total Kt
microservices that need to be addressed concurrently. For
example, the remaining resources F ′n(t), M ′n(t), and Dn(t) of
node n are sufficient at the beginning of time slot t, if there
are too many microservices eventually assigned to this node,
then it will lead to low efficiency. Thus, we need to design
carefully to overcome this drawback and achieve an efficient
dynamic scheduling. Since the resources of edge nodes are
dynamically allocated, the environment will not change until
action decisions of all microservices in Kt are completed. This
means that the microservice scheduling decisions made in a
time slot t are made sequentially, forming a time series as
shown in Fig. 2. This time series information destroys the
Markov nature of the environment, making it impossible for
the agent to generate the best action based solely on the
currently observed state skt .
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Fig. 3. Overview of the SAC-based framework.

For feature extraction of sequence information in microser-
vice scheduling, we consider adding a unit of RNN-based
structure in the policy network, which can learn the time
dependence between states of previous microservices. By
utilizing GRU, we can comprehensively integrate information
from previous microservice scheduling decisions in this time
slot into the current state. Thus, we can avoid making bad
decisions because of the conflict with previous decisions.
Specifically, a typical GRU includes two control gates: an
update gate (zkt ) and a reset gate (rekt ). The update gate (zkt )
is used to control the degree to which the state information
hk−1
t (cuk−1

t ) at the previous k−1 microservice will be brought
into the current microservice k. The larger the value of the
update gate, the more status information from the previous
microservice is carried in. Reset gate (rekt ) controls how much
information from previous states is written to the current
candidate set ĉukt . The smaller the reset gate (rekt ), the less in-
formation is written to the previous state. The updated equation
is calculated as follows: rekt = σ(Wxr ·xkt +Whr ·hk−1

t +br),
zkt = σ(Wxz ·xkt +Whz ·hk−1

t + bz), ĉukt = tanh(Wxc ·xkt +
Whc · (rekt ⊗hk−1

t ) + bc), cukt = (1− zkt )⊗ cuk−1
t + zkt ⊗ ĉu

k
t ,

and hkt = cukt , where wxr, whr, wxz , and whz is the network
weight matrix, br and bz are bias vectors, and rekt and zkt are
vectors for updating and resetting activation values of gates.

It is worth noticing that the GRU module only needs to
focus on the time series feature in a single time slot. Therefore,
at the beginning of each time slot, the hidden state of the GRU
module h0

t would be reset into the same initial value. As shown
in Fig. 3, the feature extraction layer extracts the input state
features and updates its own hidden state. In addition, state
features are input into the hidden linear layer to obtain the
final output of the policy network.

C. Soft Actor-Critic (SAC)

The SAC algorithm operates within a Markov Decision
Process (MDP) framework, where an agent interacts with an
environment over discrete time steps. Each microservice k
at time slot t involves observing state skt , taking action akt ,
receiving reward rkt , and transitioning to state skt+1. SAC aims
to maximize long-term rewards by adjusting policy entropy
to balance exploration and exploitation. It uses a maximum
entropy reinforcement learning framework to find the optimal
policy π, mapping states to action distributions probabilis-

tically to encourage exploration. The Bellman equation is
crucial in MDP, relating soft action values to state value
functions. Consequently, the relationship between the state skt ,
action akt , and time slot t for the considered microservice k
can be described based on the Bellman equation:

Qπ(skt , a
k
t ) = r(skt , a

k
t ) + γ · Eskt+1∼p[V

π(skt+1)] (8)

and the value function as

V π(skt ) = Eakt∼π(·|skt )[Q
π(skt , a

k
t )− log π(akt |skt )] (9)

where p denotes the trajectory distribution made by π,
r(skt , a

k
t ) is the reward gained by the state and action space at

time slot t for microservice k, and γ is the discount factor
in the equation. We consider Qπ(skt , a

k
t ) = Qω(skt , a

k
t ) in

the DNN where ω denotes the network parameters. The Q-
function parameters are not constant, and the actor and critic
are further updated according to the replay buffer regarding
action and immediate reward in the replay buffer. Thus, the
parameters can be trained by minimizing the loss function
JQ(ω) =

E(skt ,a
k
t ,r

k
t ,s

k
t+1)∼rb

[
1

2
(Qω(skt , a

k
t )−Qω′(skt , a

k
t ))2

]
(10)

where Qω(skt , a
k
t ) denotes the soft Q-value, rb denotes replay

buffer, and

Qω′(skt , a
k
t ) = R(skt , a

k
t ) + γ · Vθ′(skt+1). (11)

In order to stabilize the iteration of the action value function,
the Eqn. (11) defines a target action-value function, in which
ω′ is obtained through an exponential moving average of
ω. The performance of DRL algorithms is heavily depen-
dent on the policy. If the policy is optimal, the assigned
microservice will be completed within the specified time,
and the overall energy consumption will be reduced through
reasonable microservice scheduling. Conversely, if the strategy
is not optimal, microservice timeouts will become common,
and overall energy consumption will be higher. Therefore, in
order to improve the strategy, it is updated according to the
Kullback-Leibler divergence:

πt = arg min
π′∈Π

DKL

(
π′(·|skt )||

exp(( 1
∆ )Qπ(skt , ·)
Zπ(skt )

)
. (12)

In the provided text, Π represents a collection of policies
that correspond to Gaussian parameters, and the DKL term
quantifies the information loss during the approximation pro-
cess. The Kullback–Leibler divergence can be reduced further
by adjusting the policy parameters through the following
policy parameter updates: Jπ(θ) =

Eskt∼rb[Eakt∼πθ [∆ log (πθ(a
k
t |skt ))−Qω(skt , a

k
t )]]. (13)

The policy iteration is continued until it reaches the optimal
value and converges with the maximum entropy. The inter-
actions between the environment, the value function, and the
policy network are shown in Fig. 3. The detailed SAC-based
microservices offloading algorithm is given in Algorithm 2.
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Algorithm 1: Action Selection

1 Get action distribution Pπ(skt ) from actor network;
2 for n ∈ N do
3 get un and ukt [n]← un;

4 P kt ← Pπ(skt )� ukt and regularize P kt ;
5 Sample akt from P kt ;
6 return Return akt ;

D. Action Selection

When selecting actions, the agent samples according to the
probability output of the policy network, and it does not judge
whether the action is reasonable. Some constraints should be
added to the action selection process to avoid some of those
unacceptable actions. This problem was solved by defining
an Action Mask ukt to fit the constraints. The mask is a one-
dimensional Boolean vector with the same length as the action
space A. This Action Mack is updated before each action
selection, its value depends on the feasibility of a specific
action in the whole actions space. An example of an action
mask ukt = [1, 0, 1, 0, 0, 1, · · · , un−1, un]. By employing a
mask to set a portion of the action probabilities generated by
the policy network to zero, we ensure that these nodes will not
be chosen as actions. The calculation of each Boolean value
un in the Action Mask ukt will be shown in the following.

First, for the node n, if there are microservices already
processing on it and it has no idle CPU cycle, then the
node is considered a busy node, which can be obtained as
ucn = I{Fn(t) > 0}, where I(·) is an indicator function and
ucn = 1 means that the node is acceptable, otherwise it
could not be selected as an action. Second, when the node
is experiencing a shortage of memory and is not available
for the microservices k, which can be expressed as umn =
I{Mn(t)−mk > 0}. The storage considerations for images
are nearly the same, but it’s crucial to assess whether the node
already contains the microservices k required image ik. Thus,
we have uin = I{{Mn(t) − mk > 0} ∧ {xn,i == 1}}. If
ucn, umn , and uin are all equal to 1, the action is acceptable.
Otherwise, it is not a good action. To sum up, each Boolean
value un in ukt can be summarized as un = ucn · umn · uin. The
action selection is shown in Algorithm 1.

V. NUMERICAL SIMULATIONS

A. Experimental Settings

Parameter Settings. All IoT devices are heterogeneous and
randomly distributed, and the default number of nodes is 15.
The node’s CPU frequency is set between [3, 6.5] GHz and
memory is set between [80, 180] GB. The network bandwidth
is limited to between [2, 6] Gbps. Each image requires a
maximum of 10 MB, the maximum microservice size is set to
100 MB, and the maximum transfer power is set to 0.0001995.

The hyperparameters used in the SAC-based framework
include a replay memory size of 30,000, an Actor network
with a GRU hidden dimension of (128, 64) and fully connected

Algorithm 2: SAC-Based Microservices Offloading

1 Initialize: Qω1
(s, a), Qω2

(s, a), Qω′
1
, and Qω′

2
with

weights ω′1 = ω1 and ω′2 = ω2;
2 Initialize: policy πθ(a|s) with weight θ;
3 for each epoch do
4 Retrieve current state snode1 ;
5 for t ∈ {t1, t2, · · · } do
6 Obtain state of node snodet form environment;
7 Initialize: hidden state of GRU h0

t ;
8 for k ∈ {k1, k2, · · · ,Kt} do
9 Examine the required image ik, get sms,kt ;

10 Get offloading action akt by Algorithm 1;

11 for k ∈ {k1, k2, · · · ,Kt} do
12 Compute reward rkt and estimate state skt+1;
13 Save (skt , a

k
t , r

k
t , s

k
t+1) in replay memory;

14 Update JQ(ω) and θ by using
θ ← θ+ηa ·∇θJπ(θ) and ω ← ω+ηc ·∇ωJQ(ω);

15 Update soft action value function ω′;

Fig. 4. Reward comparison by using different baselines.

layers of (64, 64, 16), and an Actor learning rate of 1e-4. The
Critic network has fully connected layers of (64, 64, 16) with
a learning rate of 3e-4. The Adam optimizer is used, and the
discount factor is set to 0.99.

Baselines. To compare performance, several baselines were
performed. The details are as follows.

• Greedy Approach: A greedy algorithm will select the
node n as action akt and minimize the time that microser-
vice k waits for the image xn,i to download.

• DQN [19]: The deep Q-network contains two fully con-
nected layers, which are (128, 64) and (64, 16).

• PPO [20]: The policy network and value network both
contain two fully connected layers, which are (128, 64)
and (64, 16).

• SAC [10]: The policy network and value network both
contain two fully connected layers, which are (128, 64)
and (64, 16).

• GRU-PPO: An algorithm based on PPO, which imple-
ments the policy network mentioned in this paper.

241



(a) Total Complete Time (b) Total Energy Consumption

(c) Image Download Time (d) On-time Completion Rate

Fig. 5. Results with the varying number of nodes in different algorithms.

B. Experimental results

We present the convergence results for GRU-SAC, GRU-
PPO, SAC, PPO, DQN, and Greedy as shown in Fig. 4 when
the number of nodes is 15, the number of microservices in
each time slot is between 2 and 20, and α = 1. First, we
observe that GRU-SAC becomes stable after 40 episodes,
showing the GRU-SAC’s convergence. It can be seen that
the reward of GRU-PPO also converges fast, but the average
reward is lower than that of our GRU-SAC. PPO and SAC are
implemented with a fully connected network, which converges
in a lower reward after 75 and 110 episodes, respectively. It is
worth noting that PPO overfits after 160 episodes and reward
plummets, indicating some instability in this approach. Since
Greedy implements a fixed strategy, its reward in each episode
will not change. After all, through training with multiple
rounds for all policies, the reward of GRU-SAC is better than
other baselines.

Performance with the different number of nodes. We
show the impact of the number of nodes on total completion
time, total energy consumption, total image download time,
and on-time completion ratio in Fig. 5. As shown in Fig.
5(a), GRU-SAC and GRU-PPO perform better as the GRU
module prevents efficiency degradation caused by multiple
microservices being offloaded to the same node in each time
slot. The efficiency improvement becomes more pronounced
with an increased number of edge nodes. Although the delay
performance of GRU-SAC and GRU-PPO is similar, GRU-
SAC significantly reduces energy consumption, as shown

(a) Total Complete Time (b) Total Energy Consumption

(c) Image Download Time (d) On-time Completion Rate

Fig. 6. Results with the varying number of tasks in different algorithms.

in Fig. 5(b), and consistently outperforms other baseline
algorithms. For image download latency, Greedy algorithm
performs best when the number of nodes exceeds 20. However,
with fewer nodes (e.g., 15), images tend to concentrate on
certain nodes. Due to memory limitations, a node cannot
accept new microservices without sufficient memory, leading
to time spent re-downloading images on other nodes. As
the number of nodes increases, the on-time completion rate
improves, as shown in Fig. 5(d). Although GRU-PPO slightly
outperforms GRU-SAC in this regard, we believe GRU-SAC
is superior due to its better control over power consumption.

Performance with the different number of services.
Figure 6 depicts the impact of varying service numbers per
time slot, with a maximum microservice size set to 100 MB.
The horizontal axis ranges from 2 to 20 service requests per
slot. In Fig. 6(a), total completion time increases with more
requests, with GRU-SAC outperforming SAC by nearly 75%
when 2 to 20 requests are processed, indicating the beneficial
role of GRU in scheduling. GRU-SAC also shows efficient
energy use (Fig. 6(b)), outperforming the greedy algorithm for
image download times (Fig. 6(c)) with higher request volumes.
Fig. 6(d) illustrates a decrease in on-time completions as
service requests increase. It is worth noting that when the
number of services is small, the on-time complete ratio of
GRU-PPO is higher than GRU-SAC. Fewer service requests
imply a relatively stable environment under which the more
stable policies generated by GRU-PPO can perform better.
This is a great discovery of this experiment.
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(a) Total Complete Time (b) Total Energy Consumption

(c) Image Download Time (d) On-time Completion Rate

Fig. 7. Results with varying α in reward function in different algorithms.

Performance with the different α in the reward function.
We show the impact of different α in Fig. 7. The α works well
in our model as a parameter that balances the latency and
energy consumption. From Fig. 7(a) and Fig. 7(b), it could
be found that with the increase of the weight of delay, the
total complete time decreases while the energy consumption
increases simultaneously. By observing the iteration, we found
that When the delay weight is substantial, GRU-PPO will
explore the action probability distributions with higher on-
time completion rates in the early stages of training. However,
it stabilizes the policy there prematurely, without adequately
exploring action probability distributions that lead to lower
energy consumption. In contrast, GRU-SAC explores the ac-
tion space more comprehensively by maximizing entropy in
its policy, thereby finding a globally optimal solution. Taken
together, the GRU-SAC always has the best performance.

VI. CONCLUSION

In this paper, we consider an online container-based
microservice scheduling problem with dynamic computing
power, which aims to minimize the total delay and energy
consumption. First, we model this problem comprehensively,
considering edge nodes’ dynamic resource allocation, latency,
and energy consumption. Second, a GRU-based feature extrac-
tion method is proposed to extract the time-series information
and dependency among decisions of microservice placements
in the time slot. Third, a SAC-based RL algorithm combined
with our designed GRU unit in the policy network is proposed

to make online decisions for our problem. Finally, extensive
numerical experiments have been conducted to prove that our
proposed RL algorithm can efficiently learn the optimal offload
scheduling strategy without prior knowledge of the dynamic
environment. Our algorithm reduces the total objective by 65%
compared with other baselines, and it has outperformed in total
delay and energy consumption.
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